Aller au menu Aller au contenu
Centre of Excellence of Multifunctional Architectured Materials
Direction de la Recherche
46 avenue Félix Viallet
38031 Grenoble Cedex 01
FRANCE
Centre of Excellence of Multifunctional Architectured Materials
Centre of Excellence of Multifunctional Architectured Materials

> CEMAM > News

Doctoral thesis defence - Nicolas Bailly - LEPMI

Published on November 29, 2012
A+Augmenter la taille du texteA-Réduire la taille du texteImprimer le documentEnvoyer cette page par mail Partagez cet article Facebook Twitter Linked In Google+ Viadeo
December 6, 2012
9:30 am
Bâtiment André Rassat (E) 470, rue de la Chimie - Domaine universitaire 38400 Saint-Martin-d'Hères ( Salle de Conférences )
Design of high performance SOFC fueled by pure methane without carbon deposition

Keywords: Solid oxide fuel cell, Thin electrolyte, Electrostatic spray deposition, Methane, Gradual internal reforming, Electro-catalytic dissociation.

Abstract: The design of a high performance anode supported SOFC operating under pure methane requires the elaboration of a thin film of electrolyte and the development of an original architecture adapted to the reforming of hydrocarbons. The first part of this work was dedicated to the elaboration of yttria stabilized zirconia thin films of electrolyte by ESD onto a NiO-8YSZ porous substrate. This original technique has allowed the fabrication of thin, dense and gas-tight films starting from a suspension, with good electrical properties comparable to that of a bulk sample of the same nature. The second part of this work concerned the design of an optimized SOFC cell with an original architecture integrating an anodic catalytic membrane based on a concept gathering the gradual internal reforming and the electro-catalytic dissociation. The assembly of the optimized components is conditioned by an elaboration sequence specifically established. The adjustment of the cell in a test bench led to the achievement of electrochemical tests in hydrogen and methane at 800°C. The stable operating of the cell fueled by pure and dry methane with optimized faradaic efficiency for more than 1000 h without carbon deposition proved the viability of the studied concept.


A+Augmenter la taille du texteA-Réduire la taille du texteImprimer le documentEnvoyer cette page par mail Partagez cet article Facebook Twitter Linked In Google+ Viadeo

Date of update November 29, 2012

Univ. Grenoble Alpes